MULTIELECTRON REDUCTION OF ALKYLAZIDE BY A $(n-Bu_4N)_3[Mo_2Fe_6S_8-(SPh)_9]$ - MODIFIED GLASSY CARBON ELECTRODE

Susumu KUWABATA, Yoshiyuki HOZUMI, Koji TANAKA, and Toshio TANAKA*

Department of Applied Chemistry, Faculty of Engineering,

Osaka University, Suita, Osaka 565

A multielectron reduction of RN $_3$ (R = CH $_3$, HOC $_2$ H $_4$) giving NH $_3$, N $_2$ H $_4$, and RNH $_2$ has been succeeded for the first time by the electrochemically reduced species of (n-Bu $_4$ N) $_3$ [Mo $_2$ Fe $_6$ S $_8$ (SPh) $_9$] not only dissolved in MeOH/THF (1:1 v/v) containing CH $_3$ N $_3$ but also modified on a glassy carbon electrode in water containing HOC $_2$ H $_4$ N $_3$. The turnover number for the formation of NH $_3$ in the latter system reached more than 1 x 10 4 in 2 h, based on the Mo-Fe cluster.

Biological studies have established that the function of nitrogenase involves $MgATP^{2-}$ -activated electron transfer from Fe-proteins to Mo-Fe-proteins which reduces molecular nitrogen with eight electrons^{1,2)} (Eq. 1). It may, therefore, be very

$$N_2 + 8H^+ + 8e^- \longrightarrow 2NH_3 + H_2$$
 (1)

important to construct electron transfer systems which can provide electrons rapidly to catalysts capable of the multielectron reduction of nitrogenase substrates. Recently, we have shown that $[\text{Mo}_2\text{Fe}_6\text{S}_8(\text{SPh})_9]^{3-}$ ($[\text{Mo}-\text{Fe}]^{3-}$) catalyzes the reductions of C_2H_2 to C_2H_4 , 4) CH₃NC to hydrocarbons and CH₃NH₂, and CH₃CN to C_2H_6 and NH₃⁵) under the controlled potential electrolysis conditions in water or in MeOH/THF (1:1 v/v), as model reactions to nitrogenases. This letter reports the multielectron reduction of RN₃ (R = CH₃, HOC₂H₄) by the electrochemically reduced species of $[\text{Mo}-\text{Fe}]^{3-}$ dissolved in MeOH/THF and modified on a glassy carbon electrode. 6)

The interaction of the molybdenum-iron cluster with $\mathrm{CH_3N_3}$ was examined in DMF containing $(\mathrm{n-Bu_4N})_3[\mathrm{Mo-Fe}]$ (5.0 x 10^{-4} mol dm⁻³), $\mathrm{CH_3N_3}$ (5.0 x 10^{-3} mol dm⁻³), and $\mathrm{n-Bu_4NClO_4}$ as a supporting electrolyte. Although the electronic absorption spectrum of $[\mathrm{Mo-Fe}]^{3-}$ has not been changed at all in the presence of $\mathrm{CH_3N_3}$, the spectral feature of $[\mathrm{Mo-Fe}]^{4-}$ produced in an OTTLE (Optically Transparent Thin Later Electrode)

cell⁷⁾ under the electrolysis at -1.10 V vs. SCE in the presence of CH_3N_3 changes remarkably from that of [Mo-Fe] 4- prepared similarly in the absence of CH3N3, as shown in Fig. 1; the 306 nm band⁸⁾ assignable to the dissociated PhS ligand appears only in the presence of CH_3N_3 owing to the lability of terminal PhS for substitution reactions, while the bridging PhS ligand is inert to the reactions. 9) The oxidation of [Mo-Fe] 4in the presence of CH_3N_3 under the electrolysis at -0.6 V vs. SCE resulted in a decrease of the absorbance at the 306 nm band and the final spectrum obtained after 1 h was almost consistent with that of [Mo-Fe] $^{3-}$. Thus, $CH_{3}N_{3}$ can interact only with the reduced form of the molybdenum-iron clusters.

Under the electrolysis conditions at -1.25 V vs. SCE with an Hg working electrode in MeOH/THF (1:1 v/v, 20 cm³) containing $(n-Bu_4N)_3$ [Mo-Fe] (8.0×10^{-4}) mol dm^{-3}), CH_3N_3 (6.6 x 10^{-2} mol dm^{-3}), and LiCl (0.24 mol dm⁻³) as a supporting electrolyte under He atmosphere, the reduction of CH_3N_3 produced equal amounts of $\mathrm{CH_3NH_2}$ and $\mathrm{N_2}$ with a current efficiency nearly 100%, suggesting that almost all electrons transfered from the electrode to the clusters are consumed in the two-electron reduction of CH_3N_3 (Eq. 2). On the other hand, when the initial concentration of CH_3N_3 is decreased to 8.7 x 10^{-3} mol

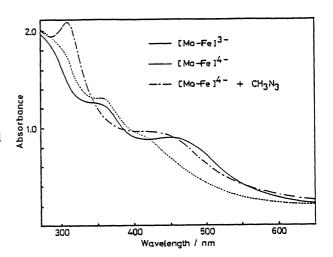


Fig. 1. Electronic absorption spectra of [Mo-Fe] $^{\rm n-}$ (n=3 and 4, 5.0 x 10^{-4} mol dm $^{-3}$) in the absence and presence of CH $_3$ N $_3$ (5.0 x 10^{-3} mol dm $^{-3}$) in DMF.

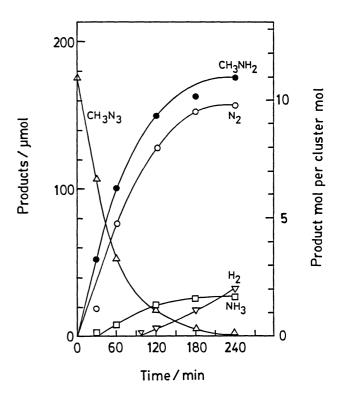


Fig. 2. The reduction of ${\rm CH_3N_3}$ catalyzed by ${\rm [Mo-Fe]}^{3-}$ (8.0 x ${\rm 10}^{-4}$ mol dm $^{-3}$) under the electrolysis at -1.25 V vs. SCE in MeOH/THF (20 cm 3). The amount of ${\rm N_2H_4}$ formed is omitted owing to too small to plot in Fig.

$$CH_3N_3 + 2H^+ + 2e^- \longrightarrow CH_3NH_2 + N_2$$
 (2)

$$CH_3N_3 + 6H^+ + 6e^- \longrightarrow CH_3NH_2 + N_2H_4$$
 (3)

$$CH_3N_3 + 8H^+ + 8e^- \rightarrow CH_3NH_2 + 2NH_3$$
 (4)

dm⁻³, the six and eight electron reductions of $\mathrm{CH_3N_3}$ take place to afford small amounts of $\mathrm{N_2H_4}$ (Eq. 3) and $\mathrm{NH_3}$ (Eq. 4), respectively, after the lapse of 30 min as well as $\mathrm{CH_3NH_2}$ and $\mathrm{N_2}$ as shown in Fig. 2, which also reveals the existence of an induction period for the $\mathrm{H_2}$ evolution. It should be noted that even in the higher concentration of $\mathrm{CH_3N_3}$ than 1 x 10⁻² mol dm⁻³, the reactions of Eqs. 3 and 4 occurred after the concentration of $\mathrm{CH_3N_3}$ was lowered down to ca. 8 x 10⁻³ mol dm⁻³ with the progress of Eq. 2. Thus, in a homogeneous system the electron transfer

from the electrode to the cluster may not be so effective for the multielectron reduction of $\mathrm{CH_3N_3}$, since only the clusters on the electrode surface can accept additional electrons from the electrode to promote the multielectron reductions.

The reduction of $\mathrm{HOC}_2\mathrm{H}_4\mathrm{N}_3$ by $(\mathrm{n-Bu}_4-\mathrm{N})_3[\mathrm{Mo-Fe}]$ - modified glassy carbon electrode under the controlled potential electrolysis at -1.25 V vs. SCE, therefore, was carried out in an aqueous solution (pH=10) containing $\mathrm{HOC}_2\mathrm{H}_4\mathrm{N}_3$ (5.0 - 15 x 10^{-3} mol dm⁻³) and $\mathrm{H}_3\mathrm{PO}_4$ -NaOH buffer (0.2 mol dm⁻³) as a supporting electrolyte. The reaction produces not only NH₃ but also H₂ without induction periods and the turnover number for the formation of NH₃, based on the amount of modified clusters, attains more than 1 x 10^4 in 2 h, as shown in Fig. 3. The result for the reduction of $\mathrm{HOC}_2\mathrm{H}_4\mathrm{N}_3$ by the

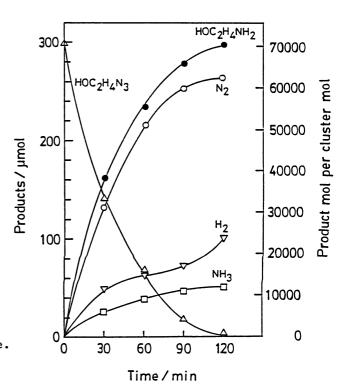


Fig. 3. The reduction of $\mathrm{HOC_2H_4N_3}$ catalyzed by a $(\mathrm{n-Bu_4N})_3$ [Mo-Fe] $(4.2 \times 10^{-9} \, \mathrm{mol})$ - modified glassy carbon electrode $(3.1 \, \mathrm{cm}^2)$ under the electrolysis at -1.25 V vs. SCE in 0.2 mol dm⁻³ $\mathrm{H_3PO_4}$ -NaOH buffer $(20 \, \mathrm{cm}^3)$. The amount of $\mathrm{N_2H_4}$ formed is omitted.

Table 1.	Amounts o	f products	for the	reduction	of HOC2H4N3	catalyzed by	7 a (n-Bu4)3-
[Mo-Fe] (4.2×10^{-9}	mol) - modi	fied gla	ssy carbon	elctrode a	t -1.25 V vs.	SCE

HOC ₂ H ₄ N ₃	Time		Product mol per cluster mol						
μmol	min	H ₂	N ₂	HOC ₂ H ₄ NH ₂	_{NН} 3	N ₂ H ₄			
50	120	3.8 x 10 ³	1.0 x 10 ⁴	1.2 x 10 ⁴	2.8 x 10 ³	0.9×10^{2}			
100	120	7.3×10^3	2.1×10^4	2.4×10^4	4.4×10^{3}	1.6×10^{2}			
300	120	2.0×10^4	6.9×10^4	7.1×10^4	1.1×10^4	5.1×10^2			
160 ^{b)}	240	1.8	9.8	10.8 ^{c)}	1.8	0.13			

a) In a 0.2 mol dm $^{-3}$ H $_3$ PO $_4$ -NaOH buffer (20 cm 3). b) Reduction of CH $_3$ N $_3$ catalyzed by [Mo-Fe] 3 - in MeOH/THF (20 cm 3). c) CH $_3$ NH $_2$.

modified electrode is summarized in Table 1. The reaction ceased within 2 h irrespective of the initial concentration of ${\rm HOC_2H_4N_3}$ and the amount of ${\rm NH_3}$ formed is proportional to the concentration. Thus, the ${\rm (n-Bu_4N)_3[Mo-Fe]}$ - modified glassy carbon electrode can effectively be used for multielectron reactions of nitrogenase substrates.

References

- 1) B. E. Smith, D. J. Lowe, and R. C. Bray, Biochem. J., 130, 641 (1972).
- 2) B. E. Smith, D. J. Lowe, and R. C. Bray, Biochem. J., 135, 331 (1973).
- 3) G. Christou, C. D. Garver, and F. E. Mabbs, J. Chem. Soc., Chem. Commun., $\underline{1978}$, 740.
- 4) K. Tanaka, M. Tanaka, and T. Tanaka, Chem. Lett., 1981, 895.
- 5) K. Tanaka, Y. Imasaka, M. Tanaka, M. Honjo, and T. Tanaka, J. Am. Chem. Soc., 104, 4258 (1982).
- 6) The modified electrode was prepared by dropping an MeCN solution (0.1 cm 3) of $(n-Bu_4N)_3$ [Mo-Fe] (4.2 x 10^{-5} mol dm $^{-3}$) on a glassy carbon, followed by drying under N_2 atmosphere.
- 7) D. Lexa, J. M. Savent, and J. Zickler, J. Am. Chem. Soc., 99, 2786 (1977).
- 8) The position and the feature of the band coincide with those of PhS formed by the controlled potential electrolysis of PhSH in DMF at -1.50 V vs. SCE.
- 9) R. E. Palermo, P. P. Power, and R. H. Holm, Inorg. Chem., 21, 173 (1982).

(Received December 15, 1984)